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Abstract. A linear algebraic solution is provided for the problem of retrieving the

location and time of occurrence of lightning ground strikes from an Advanced

Lightning Direction Finder (ALDF) network. The ALDF network measures field

strength, magnetic bearing, and arrival time of lightning radio emissions. Solutions

for the plane (i.e., no Earth curvature) are provided that implement all of the

measurements mentioned above. Tests of the retrieval method are provided using

computer-simulated data sets. We also introduce a quadratic planar solution that is

useful when only three arrival time measurements are available. The algebra of the

quadratic root results are examined in detail to clarify what portions of the analysis

region lead to fundamental ambiguities in source location. Complex root results are

shown to be associated with the presence of measurement errors when the lightning

source lies near an outer sensor baseline of the ALDF network. In the absence of

measurement errors, quadratic root degeneracy (no source location ambiguity) is

shown to exist exactly on the outer sensor baselines for arbitrary non-collinear

network geometries. The accuracy of the quadratic planar method is tested with

computer generated data sets. The results are generally better than those obtained

from the three station linear planar method when bearing errors are about 2°. We

also note some of the advantages and disadvantages of these methods over the

nonlinear method of X2 minimization employed by the National Lightning Detection

Network (NLDN) and discussed in Cummins et al. (1993, 1995, 1998).
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1. Introduction

AdvancedLightningDirectionFinder(ALDF) sensorsdevelopedby GlobalAtmospherics

Inc. (GAI), havethe ability to detectthe field strength,magneticbearing,and arrival time of

lightningradioemissions.In 1992,LightningLocationandProtection,Inc. (a division of GAI)

completeddevelopmentof an IMprovedPerformAncefrom CombinedTechnology(IMPACT)

methodfor determiningthelocationandtimeof occurrenceof lightningreturnstrokesfrom these

data[Cumminset al., 1993]. The IMPACT algorithm is based on minimizing a Z" function similar

to that provided in (1) of Hiscox et al. [ 1984] but generalized to accommodate arrival time data. A

primary advantage of the IMPACT method is that it accounts for the effects of Earth curvature.

However, since the algorithm is a nonlinear iterative approach it does not represent an analytic

solution to the problem, i.e., the source location and time of occurrence are not directly determined

in terms of the measurements and measuring network geometry.

In the current study, we go back and carefully reexamine various forms of the retrieval

problem cited above for planar geometries, i.e., neglecting Earth curvature. Our intent is not

necessarily to improve upon results obtained from the IMPACT method, but rather to lay down a

detailed formalism for solving the retrieval problem when Earth curvature is neglected. We are

motivated by a desire to specifically determine the source location (x, y) as a mathematical function

of the measurements under of variety of conditions (i.e., differences in the number, location, and

type of measurements). Since algebraic solutions are obtained, we do not need to invoke a

computer search algorithm to determine optimum solution parameters. The accuracy of search

algorithms (e.g., Xz minimization) depend, in general, on search parameter initialization, and on

the presence of multiple minima. Finally, we feel that more physical insight into the nature of the

retrieval problem is obtained by determining how the measurements are specifically related to the

lightning source location (and time of occurrence).

A Linear Planar (LP) method is first introduced that allows one to simultaneously analyze

field, bearing, and arrival time measurements. The method involves one large system of linear



equationsthatoffersa highdegreeof flexibility from thepoint-of-viewof theuser'sapplicationai

needs.For example, if only a certainnumberand type of measurementsare availablein ,an

experiment,the line;u"systemof equationsdegeneratesinto a smaller set of equations,and a

straight-forwardsolutionprocessisretained.

WealsointroduceaQuadraticPlanar(QP)methodthatcanbet,sedwhen only three,'u-rival

timemeasurementsareavailable.Sucha situationarisesif therearesensorhardwarefailuresand/or

whenfield amplitudeandbearingmeasurementdataquality is unacceptable.Although this method

is mathematically nonlinetu', full analytic solutions are derived. Physical insight about the nonlinear

solution space, not discernible from conventional X2 analyses, is fully described by examining in

detail all quadratic root solutions derived from the QP method.

Extensive tests of the LP and QP retrieval methods are provided using computer-simulated

data sets because these methods will be applied in a future study of ALDF data that were obtained

during the Maritime Continent Thunderstorm EXperiment (MCTEX) in Darwin, Australia [Kem_en

et al., 1994; 1996]. Data from this network comprise one of several ground-truth sites for the

validation of NASA's space-based lightning detectors (the Lightning Imaging Sensor (LIS) and the

Optical Transient Detector (OTD) described in Christian et al. [ 1992] and Goodman et al. [ 1995],

respectively).

2. Linear Planar (LP) Method

We begin by considering n > 3 sensors situated at locations ri, i = 1, 2 ..... n relative to

some origin. Each sensor has the capability to measure the arrival time, ti, magnetic bearing, _Pi,

and field strength, Fi, of the radio emissions from a lightning source with location, r, time of

occurrence, t, and radiation source strength, s. Hence, from the 3n measurements

{(tl, _ ,Fi),...,(t,,4),,F,) } we wish to determine the five unknowns (r, t, s). In so doing, we

neglect Earth curvature.

Figure 1 summarizes the geometry of the LP model. Because ALDF sensors might not be

deployed on a flat topography, the ith sensor located at r i need not lie in the xy plane, i.e., zi _: 0 in



4

general.Therelativepositionvectorfollowsstandardphysicsconvention,thatis, it pointsfrom the

sourceat r to theobservationpoint, ri, so that Ri = ri - r. Neglectingrefractiveeffects in the

atmosphere,theexcitationtimeof theith sensor is

LR, ,ti =t+ (1)
C l

where c is the speed of light. Solving for Ri, squaring, and rearranging terms leads to

l (ri2 -- c2t2 ) = xix + YiY + ZiZ - c2tit - l (r2 - c2t2 ) (2)

It is desirable to remove the last term on the right-hand side of (2) since it is nonlinear in the space

and time variables. To do this, we define the measurement

1 1
Oti - i(_z _ c2t2 ) _ _(rl2 _ c2t_ ) (3)

A comparison of (2) and (3) shows that a_ is linearly related to the lightning location,

r .. (x,y,z), and lightning time of occurrence, t, that is,

ot i = (x i - x I )x + (Yi - Yl )Y + (zi - zl )z - c 2 (t i - t t )t ; i = 2,3 ..... n (4)

A detailed investigation of this linear form has been provided in Koshak and Solakiewicz [1996].

Next, we consider the information content of ALDF bearing data. From Figure 1 we see

that the lightning location (x, y) is given by



x = x_ + p, cos ¢,

y = y_ + p, sin

(5)

It is useful to define the measurement

fl,. - x, sin $_ - y_ cos ¢,. (6)

Now from (5) we note that (x- xi)/(y - Yi) -_ cos¢/sin¢i, so that using (6) gives

fl, =sin ¢,x- cos¢,y (7)

Finally, we consider measurements of the radiated field strength. Assuming a 1/R,

attenuation in the radiation field gives

1
F, = _s (8)

Ri

Once again, we solve for Ri, square, rearrange terms, and define the measurement

_'i = l ( riZ- 52) • (9)

This leads to the following relation

1)_'_ = (x i - x 1)x + (Yi - Yl )Y + (Zt - Zl )Z + _ s_ s2 ;
i=2,3 ..... n . (10)
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If weconsideronly n -- 3 sensors, (4), (7), and (10) can be combined to give

a2

a 3

7z

)'3

-(x2 - )

(x3- x, )

6 sin _l

= 6sin_2

6sine 3

(x: - x, )

- x, )

(Y2-Y:) (z2-z_) c(t:-t 2) 0

(Y3-Yt) (Z3-Zl) c(t:-t3) 0

-6 cos Ct 0 0 0

-6 cos Cz 0 0 0

-6 c0s _3 0 0 0

(Y2 - Y_) (zz - Zl ) 0 lltz (x 2 - x: )

(Y3 - Yl ) (Z3 - zl ) 0 llt3(x 2 - x: )

X

Y
Z

_dj

(11)

'[/ 2where 6 is a weighting factor chosen as 10 3 meters, 1/t_= _. F_/F_) -1] _" is a dimensionless
J

parameter, d, = ct, d_ =. _2s2, and _" = [F: (x 2 - x:)l_2] "l is a scaling factor to be described below.

Defining the column vector on the left-hand side of (I I) as g, the matrix by K, and the remaining

vector by f, we may rewrite (11 ) as

g = Kf . (12)

All elements of K and fare in units of meters, and all elements of g are in squared meters.

This was accomplished by retaining a factor of c in front of the time difference measurements in the

first two rows (fourth column) of K, by multiplying (7) by the weighting factor 6, and by scaling

the field, F_, and source strength, s, each by the factor _', i.e., by making the substitutions: F_ ---)

,__f:, and s --.) _s in (8). [Note that the sites must be numbered in such a way that x z > xj so _" is

not complex; this can always be accomplished since the numbering of sites is arbitrary and because

the translation and rotation of the xy coordinate system used in the LP method is arbitrary.]

In general, the K matrix has 3n-2 rows and 5 columns, where n -- 1, 2, 3 ..... If there is

only n - 1 sensors in the network, K degenerates into a row vector and (12) is underdetermined. If

there are n - 2 sensors, K will have 4 rows and (12) will still be underdetermined. For n >_ 3 sites,



K will have> 7 rows and (12) will be overdetermined. For overdetermined systems, f can be

retrieved using the least-squares inversion provided in Twomey [1977]

f = (I_K)-' I_g , (13)

where the tilde represents matrix transposition. The source time of occurrence and source strength

are determined as: t = d, / c, s =dl :z / _ , respectively.

From the foregoing generalities, we now note that ALDF sensors are intended to trigger

only on the ground wave of a cloud-to-ground discharge. Hence, the source can be regardcd as

being located at z = 0. In this case, we can remove the third component of f, that is, we consider

the column vector f- col(x, y, d,, d,), and we remove the third column of K. We then regard the

expression in (12) as a (3n-2) by 4 system of linear equations. In this case, n -- 2 sensors

generates a (4x4) K matrix so that (12) is a determined system with direct solution f = K-Ig.

Hence, the LP method can be used by an experimenter that has only two sensors, each measuring

bearing, arrival time, and field amplitude. In this case, source location (x,y), time of occurrence, t,

and source strength, s, can be retrieved. If the two sensors do not provide field amplitude

information, the experimenter can still retrieve the flash location and time of occurrence, i.e., (12)

becomes a (3x3) system of linear equations, and f .. col(x,y,d,).

If _5is unity, the row vectors of K involving sin¢i and cosO_ appear numerically small i.e.,

like a zero vector, relative to the other row vectors of K, and the matrix is ill-conditioned for many

source locations when only three ALDF sensors are available.

To avoid unstable inversions associated with an ill-conditioned K-matrix, we have made

the assignment 6- 10 3 meters. This increases the magnitude of the small trigonometric

components of K and effectively filters small eigenvalues; see section 3.4 below and Appendix A

for additional details regarding the value of t$. Other, more sophisticated means of filtering small



eigenvaluesby adding externalphysical constraintsto the solution process,arediscussed

Twomey [1977], Chapter 6.

in

3. Simulated Tests of the LP Method

3.1 Overview

In this and all tests to follow, we do not consider the field amplitude data, F_ . We also

assume that all sources and sensors ,are located on tile surface of a spherical Earth. By selecting a

known source latitude/longitude location, we generate the true arrival times and bearings to each

sensor. Simulated measurements are generated by adding errors to the computed arrival times and

bearings. The errors are chosen from a uniform random distribution.

Next, the simulated measurements are analyzed with the LP method. Since the LP method

is a planar model, we must establish a convention for mapping source and sensor locations

(expressed in degrees of latitude and longitude) to locations in the xy-plane of a standard Cartesian

coordinate system. We then apply the LP method to solve the problem in the Cartesian system.

Next, an inverse mapping is used to convert the (x, y) solution back into latitude and longitude

coordinates on the surface of the Earth. At this point, the latitude/longitude solution can be

compared with the known source to assess true location error.

If one assumes a fiat Earth and performs the entire simulation within a Cartesian coordinate

system, the resulting retrieval errors are smaller. This is because one avoids errors due to Earth

curvature and the numerical errors associated with spherical/Cartesian system mappings. Because

in any real field experiment the source retrievals are ultimately referenced to the spherical Earth, we

include the net effects of Earth sphericity in this and all other simulations provided below.

3.2 Spherical Arrival Time and Bearing

Figure 2 indicates how to compute the arrival time, ti, and bearing, ¢i, for the i th sensor on

a sphere. The unit vectors pointing from the origin O: to the i th sensor (M), to the lightning source

(L), and to the North Pole (N) are, respectively,



ri = c°scPi c°s 2ifl + c°s_° i sin2t'iv + sin_° iCv

f = cosq_cos2fi + cosq_sin).¢, + sin_oCv (14)

Using the law of cosines from spherical trigonometry gives the spherical angle, A1"

180cos_l(c°sa-c°sbic°sci 1Ai = _ -s_tlb i sin c i '
(15)

1
where a=cos-'(f N .f), b i =cos-'(_ u "f'i), ci =cos-'(_, .f)= _ct i , R _ radius of Earth, and

by convention the lightning source activates at t - 0. The angle, Ai. varies between 0 ° (North) and

180 ° (South). We correct A; to construct the bearing function, _0i, that varies in the manner: 0 °

(East), 90 ° (North), 180 ° (West), 270 ° (South), that is,

¢i = 90 - A i (North East sources)

¢i = 90 + A_ (North West & South West sources) (16)

Oi = 450- A i (South East sources)

3.3 Mappings

In general, different mappings produce different retrieval errors. We consider two possible

approaches: Mapping #1 (chosen for its mathematical simplicity), and Mapping #2 (chosen for its

orthogonality). In Mapping #1, we have
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x = (_. - AI )Rcos_o t

y=(p-pl)R ,

(17)

where (A, q_) is an arbitrary longitude and latitude, respectively. The origin of the Cartesian

coordinate system has been arbitrarily selected as site i --- 1, i.e., the ordered pair (At , _PL) is the

location of site 1 and x()t = Al, _P= _Pl ) = 0, y ()t = A.I , _0= _Pl ) = 0. Note that y is measured

along a great circle, i.e., a longitude belt, but that x is measured along a latitude belt [which is only

a great circle if _01= 0 (the Equator)].

In the second approach, or Mapping #2, we insist that both x and y are measured along

great circles. To do this, we consider an orthogonal system (fi, ¢', (v) where fi is a unit vector

directed from the center of the Earth to the intersection of the Prime Meridian and Equator, _v is a

unit vector directed from the center of the Earth to the North Pole, and ¢' completes the ordered

triple in accordance with the right-hand rule, i.e., ¢, - fv × ft. We then rotate this coordinate

system through two Euler angles (Al , _P_) and define the new resultant ("starred") system as

(fi*, ¢'*, _*). In the starred system, fi * is directed from the center of the Earth to site 1. Mapping

#2 is then

x = RA (A,tp)

y = Rq3*(A,q_)

(18)

where

A* (A'tP)= tan-l( c°s_°sin2c°s&t -c°scpc°s_'sin_l 1cos q_cos &cos 2, cos q_, "-_c_s _-s_n _ si--_l _ + sin q_sin q_, '

¢p*( 2_,_p) = sin-t (sin q_cos _oI - cos _pcos 2 cos &t sin q_t - cos _osin 2 sin 2j sin q_l )

(19)



Again, one can verify from (18) and (19) that x(A=Al,_p=tpl)=O, y(A.=At,q_=_pl)=O.

The arctangent expression in (19) must be appropriately corrected depending on what quadrant

(North East, North West, South East, South West) the point (_, _p) is relative to site 1.
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3.4 Simulation

We first consider three ALDF sites in the Darwin, Australia region that were used as part of

the MCTEX described in Keenan etal. [1994; 1996]. Computer-generated lightning sources were

spaced 0.02 ° (- 2 km) apart across the analysis region. Figt, re 3a shows the spatial distribution of

the retrieved horizontal source location error, contoured in units of kilometers, when no

experimental errors are considered and when Mapping #1 is used. The retrieved location errors tue

within 1 km for regions outside the ALDF network.

Since no experimental errors have been added to the simulated values of the arrival times

and bearings, the retrieval errors shown in Figure 3a are due solely to 'Earth curvature and

numerical truncation error. We originally performed these simulations, and all simulations to

follow, assuming a flat Earth. When this was done, all of our methods gave retrieval errors well

below 2.5 meters across the entire analysis region when no measurement errors were involved.

This is to be expected since our methods are exact solutions for the plane (the 2.5 meter error

maximum occurred only in the LP method over a limited portion of the analysis region and was an

artifact of what accuracy level we required of our iterative matrix inversion routine). Hence,

compared to the negligible errors obtained from the flat Earth simulations, the errors shown in

Figure 3a are effectively due to Earth curvature alone. However, the amount of retrieval error due

to Earth curvature depends on what cartesian-to-spherical coordinate system mapping is used (e.g.,

Mapping #1, or Mapping #2). Because one will always be interested in how much retrieval error

the planar models acquire due to Earth curvature, all simulations below show retrievals first

without added measurement errors, as in Figure 3a.

When experimental errors are included in the simulation, we obtain the retrieved location

errors given in Figure 3b. The retrieved errors are mean values obtained from performing 100



individualretrievalsat eachtrial location.For eachof the 100trials, an ,arrivaltimeerror selected

from auniformrandomdistribution(rangingfrom -300 ns to 300 ns) is addedto thearrival time

value,anda bearingerror (rangingfrom -2° to 2°) is addedto thebearingvalue. In addition,we

havesimulatedsensorlocationerrorsbypurposelyenteringinto theLP methodfalsesite locations

(with anerrorasgreatasone-halfmeter);thesensorlocationerrors haveremainedfixed for all

sourceanalyses.As expected,the additionof experimentalerrors increaseslocation retrieval

errors, but theretrievederrorsarestill within 10 km for a largeportion of the analysisregion.

Roughlyspeaking,i.e., notaccountingfor Earthcurvatureerrors,truncationerrors,or othererrors

dueto matrix inversion, a 300 nstiming errormultipliedby the speedof light gives only a 90

metererror,anda2°errorat arangeof 300km isabout10kin.

WhenMapping#2 is usedinsteadof Mapping#1, we obtaintheresultsshownin Figures

4aand 4b. As before,no experimentalerrorshave beenaddedto the sensorpositions, :wrival

times,andbearingsin theresultsof Figure4a, but theresultsin Figure4b includetheseerrors.

TheresultsinFigure4aappearsomewhatbetterthanthosein Figure3a, but theresultsin Figures

3band4baresimilar.

Figures5a,5b,6a,and6b showall of thesametypeof analysesjustdescribed,but for the

caseof fourALDF sensors.Theadditionalsensorclearlyhelpsreduceretrievalerror. In addition,

Mapping#2producessmallerretrievalerrorsthanMapping#1.

Whenfour sensorsareavailable,bearingdataarenot neededto obtain lightning location

retrievals(see (11)). By removing the bearingdata from the four-station MCTEX region

simulations,thatis assigning6 = 0, and by applying Mapping #2 we obtained virtually the same

results as those presented in Figures 6a and 6b. This is because the weighting factor _ introduced

into (11) to generate Figures 6a and 6b is relatively small (i.e., 103) so that bearing data has little

influence on the final solution. We also find little change in the solutions for intermediate values, 6

- 10, 102. However, as we increase 8 from 103 to 104, 105, and 106 the retrieval errors increase

(see Appendix A for more details).

12
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For a threesensorALDF network,bearingdataplaysa moreprofoundrole in helpingto

constrainthesolution space.If S = 0 (no bearingdataused), therewould be fewer constraint

equationsthanunknowns,andonewouldnotbeableto obtaina solutionusingtheLP formalism.

[Note:adifferentformalismto bedescribedin section4 belowcanbeusedto find solutionsovera

substantialportionof theanalysisregionusingjust3 arrival timesensors.]As noted above, when

fi -- 1 the K matrix is ill-conditioned for many source locations, and the computer time required to

invert K is excessive. When 6-- 10, 102, 103, or 10 "sthere is no problcm inverting K and there is

no appreciable change in retrieval error. When 6 = 105 the retrieval errors begin to increase

slightly. Three station LP simulations for different values of S are also provided in Appendix A.

For comparison, we also provide error results (Figs. 7a, 7b) for the three sites used in the

Tropical Ocean Global Atmosphere Couplcd Ocean-Atmosphere Response Experiment (TOGA

COARE) described in Orville et al. [I 997] and Peterson et aL [1986]. This experiment employed

a larger sensor baseline than that used in MCTEX, and our simulated tests cover an analysis region

18°×18 ° in latitude and longitude. The sources in this simulation where placed 0.05 ° apart and

Mapping #2 was used; as with the three sensor MCTEX study, the retrieval errors for Mapping #2

differ little from those errors obtained using Mapping #1. Overall, the 2 ° bearing error and the

effects of "Earth curvature make it difficult to obtain errors below I0 km for distant sources.

4. Quadratic Planar (QP) Method

In this section we assume that only three arrival time measurements are available from the

ALDF network. Hence, the methods of section 2 cannot be applied, but some insight about the

source location can still be obtained. Once again, considering only the radio emission from the

lowest part of the return stroke, we take z = 0. We assume that sensor i = 1 is at the origin of a

rectangular Cartesian coordinate system, i.e.,x_ = yl = zj = 0, and we specify the convention

t I - 0. This leads to one nonlinear equation and two linear equations all in the three unknowns

(x, y, r)



X 2 + y2 = r 2

qi - (ri2 -c2t2i ) = xix + YiY + ctir ; i=2,3 .

(20)
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The equations in (20) were derived from the transit equation in (1) by means similar to that

discussed prior to (2) of section 2. We have removed the source activation time, t, with the

relation t = -r/c. Since t_ - 0, it is consistent that t < 0 given that r > 0. Each sensor is a distance

ri = (x 2 + y2i )1/2 from the origin.

Fundamentally, these equations define three circles each with radius c(t i - t) and centers at

(xi,yi), where i = 1, 2,3. We will see below that the source is located where the three circles

intersect. We will also find that certain source locations produce arrival time data that can be

described geometrically by two possible sets of three circles. Each set of three circles define a

unique intersection point in the xy-plane thereby leading to a fundamental ambiguity in source

location retrieval.

Geometric intersections of the circular curves described above are obtained by solving the

system of equations in (20). To solve the system, we first subtract the terms ctir from each side of

the linear equation set

,F

qi-t = qi - ctir = xix + YiY ; i = 2,3 . (21)

Identifying the vectors, q =. col(q I , q2)' r m col(x, y), we may write

q =Qr , (22)

where the Q-matrix and it's inverse are given by
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Ex2y2]ol I iy3y21Q _ _

x3 Y3 x2Y3 - Y2x3 -x3 x2

(23)

From (22) and (23) and our discussion preceding (21) we have the relations

x(r) = (Y3ql - Y2q2 ) / (x2Y3 - Y2X3 )

y(r) = (x2q 2 - x3q I ) / (x2Y 3 -- Y2X3 ) (24)

t(r)=-r/c

The x and y variables are written as functions of r in (24) since the components of q depend on r as

given in (21). Substituting the first two equations of (24) into the first (nonlinear) equation of (20)

and carrying out the algebra leads to an equation quadratic in r alone

Ar 2 + Br + C = O , (25)

where

A = c2[r32tg - 2(x2x 3 + Y2Y3 )t2t3 + r_t_ ]- (x2Y 3 - Y2X3 )2

2 p t t 2"
B= 2c[-rj q2t2 +(x2x 3 + y2Y3)(q2t3 + q3,2)- r:;q3t3 ]

C= r32q22 - 2(x2x3 + Y2Y3 )q2q; + r_q; 2

(26)
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Hence, the lightning source range, r, is the nonnegative real root obtained from the formal (two

root) solution

r{
-B + _B 2 - 4AC

2A

(27)

Values of r = 0 correspond to a direct lightning strike of sensor i = 1, which we ignore. Note from

(26) that the numerical value of the coefficients (A, B, C) are obtained from the sensor locations

and excitation times, that is, on the six variables: {x2,yz,t 2, x3,Y3,t3}; the variables, ql, are

obtained from the expressions ½(r _ -c2t 2 )as given in the last two equations of (20). After these

data are used to compute r, (24) is used to find the lightning location (x(r), y(r)), and time of

occurrence, t(r).

5. Simulated Tests of the QP Method

By placing computer-generated lightning sources 0.02 ° apart in latitude and longitude

across the analysis area (see section 3), we have determined the horizontal location error resulting

from each root in (27). To facilitate comparisons with simulated tests of the LP method, sensor

position and arrival time errors used here are as described in section 3.4 and 100 trials at each

source location are once again used to generate mean retrieval location errors. Mapping #1 given in

(17) is employed.

Figure 8 clarifies what root provides a smaller retrieval error. The shaded regions are where

r÷ provides a better retrieval than r. (the unshaded region is where r. provides a better retrieval than

r÷). Interestingly, the dividing lines of these regions are defined by the sensor baselines.

When we pick only the root that provides the best retrieval and plot the associated error

result over the analysis region, we obtain the result given in Figure 9a. When a 300-ns uniform
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randomerror is added to the computer-generated arrival times, we obtain the mean horizontal

distance errors given in Figure 9b. Considering that only three sensors are involved, retrieval

errors are quite good; a large region of errors below 1 km is evident. Distant sources, or sources

located near the outer sensor baselines are more difficult to accurately retrieve. By outer sensor

baseline we mean: any position along a great circle passing through 2 sensors except those points

on the great circle located between the two sensors. A comparison between the three station LP

results in Figure 3b shows that the QP method provides better results over most of the analysis

region. This is due in part to the large 2 ° bearing errors implemented in the LP simulation and the

fact that the three station LP method depends on bearing data to obtain a solution. The four station

LP method (Figure 5b) outperforms the QP method.

Since bearing data can aid in determining which root, r÷ or r_, is correct (see section 6.1

below on solution ambiguity) and since the QP method gives generally better results than the 3

sensor LP method, it is evidently better to use the QP method than the 3 station LP method even

when bearing data are available. This conclusion is based, of course, on an assumed bearing error

of 2 °.

6. Examination of QP Method Roots

When applying the QP method to actual arrival time data, one picks the solution associated

with a nonnegative real root, i.e., the source range, r, must be nonnegative and real. A detailed

discussion of root results is provided below.

6.1 Unequal Nonnegative Real Roots (Ambiguities)

In the discussion of three sensor networks by Holle and Lopez [1993], pp. 8 and 11, the

lightning source location (x, y) is described in terms of the intersection of two hyperbola branches;

each branch is defined by two sensors. For some lightning source locations, the hyperbola

branches intersect at two locations [see for instance, Fig. 6, p. 11 of Holle and Lopez, 1993].

This amounts to a fundamental ambiguity in location retrieval and the authors correctly assert that
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theambiguitycanbe removedby addingafourth(properlypositioned)sensor.Ambiguities are

describedinour formalismby theintersectionof circlesasindicatedabovefollowing(20).To fully

appreciatethehyperbolicandcirculargeometricalviewpoints,it is importantto recognizethatthe

two intersectionpointsdefinedby two setsof threecirclesareidenticalto thedoubleintersections

obtainedfrom thetwo hyperbolabranchesmentionedabove.In other words, thesetwo widely

differentgeometricalviewpointsproduceidenticalresults,astheymust.

Without referenceto the geometryof hyperbolicor circular intersections,our algebraic

formalismimmediatelydefinesall ambiguouscases. An ambiguity will exist whcnever two

unequal nonnegative real roots result from (27). In order to determine what lightning source

locations produce these "ambiguity regions", we have kcpt a record of the root results in the

numerical experiments described in section 5 above. For the case of no simulated experimental

errors, the source locations that resulted in two unequal nonncgative real roots are indicated by the

shaded regions in Figure 10; see section 6.2 below for minor corrections to the anabiguity regions.

In general, a different network geometry would produce different results.

Strictly speaking, since two distinct sources can produce identical arrival time difference

information, there is no means of discriminating which source location is correct unless some

additional information is supplied to the retrieval process. In effect, the solution is fundamentally

nonunique. [Similar comments about the retrieval of charge from ground-based field measurements

have been made in Koshak and Krider [ 1994]. In that problem, a point charge Qo, and a sphere of

radius a with total charge Q,, produce identical electrostatic fields outside the radius a.] Hence,

additional measurements (e.g., arrival time, bearing, signal amplitude, radar, acoustical,

interferometric) must be used to pick the correct root. Bearing data would be the most common

data to use in root discrimination since it is part of the ALDF data stream.

Nonetheless, an experimenter might be tempted to compare the shaded regions in Figures 8

and 10 in order to determine which of the two unequal nonnegative real roots produce the true

source location. However, one must remember that Figure 8 does not pose a real physical
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constraintto an unknown sourcesinceit only provides information if the source location is

already known; obviously in a real field experiment the source location is not yet known.

Additional rigor clarifies the immutability of the ambiguous case. Note that there ,are three

ambiguity regions in Figure 10, and call the regions {R I,R2,R3}. Similarly, there are three regions

{PI,P2,P3 } in Figure 8 that are wholly contained within each of the respective ambiguity regions.

If one subtracts the respective regions {Pt,P2,P_} from the respective regions {R,,R2,R_}, one

obtains the three regions {NI,N2,N3}- {RI-PI,Rz-P2,R3-P3}. When two unequal

nonnegative real roots are obtained, we find that r÷ occurs in Pi and r_ occurs in N,, that is, the pair

of roots produce solutions in (P_,N_), (P2,N2), or (P3,N3). From Figure 8, region P, is the

region where r÷ is correct, Ni is the region where r_ is correct, and both Pi and Ni are subregions of

R;. In other words, each solution is possibly correct so that comparisons between Figure 8 and

Figure 10 serve no help in determining the correct root.

Nonetheless, r÷ is correct for most of the ambiguity region shown in Figure 10. Hence, an

experimenter who obtains two nonnegative real roots, but who does not have ancillary data sets

such as radar, magnetic bearing, etc., has a better chances of getting the correct solution if he/she

selects the root r÷.

6.2 Equal Nonnegative Real Roots

In this section we are interested in identifying what source locations produce two equal

nonnegative real roots. Note that this condition is satisfied when the discriminant,

B 2 - 4AC, in (27) is zero, that is, the two equivalent roots correspond to a unique (unambiguous)

solution [x(r), y(r), t(r)] where r÷ - r_ = r. In Appendix B, we show for arbitrary non-collinear

network geometries that the discriminant function is zero only along the outer sensor baselines.

Therefore, the ambiguity regions shown in Figure 10 are technically not ambiguous along these

linear domains.



6.3 Complex Roots

Complex roots occur whenever the discriminant in (27) becomes negative. Figure 11

shows how the discriminant varies for different source locations across the analysis region. As we

have already shown in section 6.2 and Appendix B, the discriminant is zero for sources located

along the outer sensor baselines. Figure I1 shows additionally that the discriminant is a relative

minimum at the outer sensor baselines.

From the simulation in section 5 (with 300-ns arrival time errors, and 100 trials per test

location) we have tallied the fraction of trials at each location that produce complex roots. Figure 12

shows that there are no complex roots over most of the analysis region except when the sources are

near the outer sensor baselines. These regions (or "spokes") appear to diverge with range from the

sensors and as many as 40-60% of the sources are complex within the spokes. Clearly, for

sources located sufficiently close to the outer sensor baselines, measurement errors are

occasionally large enough to drive the discriminant negative. Whenever the discriminant is

negative, both roots in (27) are complex and no physical solution is obtained. Conversely,

whenever complex roots are obtained from a set of actual measurements the source is likely to be

located in one of the spoked regions.

2O

6.4 Overview of Root Results

From our discussion so far, we can conclude that any retrieval will produce one of the

following cases: (a) r+ _>0, r_ >_0, r+ _: r_ ; (b) r+ >_0, r_ -2_0, r+ = r_ ; (c) r. < 0, r_ >_ 0; or (d) r+

and r_ complex. Case (a) corresponds to a source that is located inside one of the ambiguity

regions, case (b) corresponds to a source located on an outer sensor baseline, case (c) corresponds

to a source that is not located in any of the ambiguity regions or along any outer sensor baseline,

and case (d) corresponds to a source located on or near any outer sensor baseline when

measurement errors are sufficient to drive the discriminant negative.

Note that we do not include the case r+ > 0, r_ < 0 since if r+ _>0, the source must lie in one

of the ambiguity regions implying that r_ would be nonnegative (i.e., a contradiction). We also
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disregardthe casethat both roots ,arenegativesincea physical sourcemust lie a nonnegative

distancefrom sensori _- 1.

7. Summary

In this writing we have introduced two methods for retrieving the location and time of

occurrence of lightning sources from a network of ALDF sensors. The first approach, or LP

method, assumes that arrival time, bearing, ,-and field amplitude measurements are all available from

the network. As provided in (12), these measurements ,are collected into one coherent linear system

of equations that is solved by straightforward inversion. Because of the general form of (12), we

have clarified what solution options one has if only a subset of the measurements are available

and/or if one or more sensors could not trigger on an event. In the extreme case of having only

three arrival time measurements from the ALDF network (as might be the case due to sensor

subsystem failure), we have introduced the QP method.

Perhaps the most compelling reason for working with the above methods is that each

represent an algebraic solution. The planar methods express the source locations directly in terms

of the measurements. The solutions are concise, require little computer time, and afford the user

with specific physical insights about the retrieval problem (e.g., relative importance/effects of

timing/bearing data on final solution, regions of ambiguity, source locations producing complex

roots). This starkly contrasts the approach of nonlinear X2 minimization discussed in Cummins

et al. (1993, 1995, 1998) and Hiscox et al. (1984) wherein solutions are found by a computer

search of the optimum lightning source parameters (latitude, longitude, and time of occurrence).

Solutions derived from X_ minimization techniques depend, in general, on what starting values are

chosen for the lightning source parameters and solution errors arise due to the presence of relative

multiple minima in the Z2 surface. Nonetheless, the nonlinear minimization approach does account

for Earth curvature and the extra computational time imposed by the method has not posed any

practical problems owing to the exceptional speed of modem digital computers.

• _: .ii: : _
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If in the future more sensorsareaddedto the National Lightning DetectionNetwork

(NLDN) theaveragesensorbaselinewill decrease,andtherangebetweena lightningsourceand

the four nearestsensorswill decreaseConsequently,the adverseeffectsof Earthcurvatureare

reducedasmoresensorsareadded,andtheplanarmethodsprovidedherebecomemoreattractive.

Moreover,theLP andQPmethodsintroducedhereoffer theauthorsandotherresearchers

at theNASA-MarshallSpaceFlight Center(MSFC) a meansto intensivelyanalyzeandcompare,

first hand,lightningradiosourcelocationsin theMCTEX analysisregionwith OTD/LISlow Earth

orbit lightningdetections.

In thefuture,we intendto applythemethodsto analyzea wide rangeof thunderstorms,to

intercomparethemethods,andto relatetheresultsto other independentdatasetssuchas: radar,

OTD, LIS, LightningDetectionandRanging(LDAR), andtheNLDN. The first authorwill also

improvesomeof thematrix methodspresentedhereto directlyaccountfor Earthsphericity;more

elegantoblatespheroidalmodelsarealsounderconsideration.
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Appendix AwWeighting of Bearing Data

It is of interest to determine to what extent bearing data is actually being used to constrain the

lightning source location in the LP method as a function of the weighting factor (5 introduced into

the linear system of equations provided in (11). Insight is gained by considering the case of 3

sensors and ignoring field measurements, F_. Then (11) reduces to

"a2

a3

fill =

__f13.

-( X2 - Xt ) ( Y2 -- Yl ) c( tj - t 2)"

(x3-xl) (Y3-Yl) c(tl -t3)

(s sin dpt -(s cos dpl 0

(5sin ¢2 -(5 COS _2 0

(5sin (/)3 -(5 cos gP3 0

(A-l)

This system, which can be written in the standard notation: g ,., Kf, has the least squares solution

f = (_K)-'l_g. We are interested in the explicit functional dependence of x and y on the arrival

time, t_ , and bearing, _, data, and on the weighting factor, (5. Because this is a very involved

hand calculation, we utilize a computer-aided symbolic manipulator to arrive at the following form

X _

6

+ h3a 3 + E(hj(5 2 + hj+3)[3j_ 3

j=4

(A-2)

The ten functions, hj (j -- 0, ..., 9) depend, in general, on the arrival time and beating data. The

variables (c h , as) depend only on arrival time data and network geometry, and the variables ( ,8j ,

,85 , ,83) depend only on beating data and network geometry as given in (3) and (6), respectively.

A similar form holds for y. The coefficient in front of the square brackets in (A-2) does not

preferentially weight the a's or ,8's so it is of no concern in this discussion. However, the

• . 4
-. : : . " ..... . .. . . . .
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coefficients (h s +t_2hj÷3)do weight the /3's but not the a's (i.e., these coefficients weight the

bearing data, but not the arrival time data). This leads to the final results

= 0 _ no solution

1

tim x= _(h4fl t +hsfl 2 + h6f13) - A(¢i);S--40o
/ = 1,2,3.

(A-3)

The first result is true since when 8 = 0 there are 2 equations in three unknowns in (A-I). The

second result is true because the only arrival time dependence associated with each function

(h0, h4, hs, h6)is a factor (t22 + t]). When the ratios hj/h o are taken this factor cancels out and we

are left with a function, A, that depends only on bearing data.

In summary, for a positive finite value of 6, both arrival time and beating data are utilized.

However, as t5 is increased from zero, bearing data eventually becomes more heavily weighted

over arrival time data until, for a sufficiently large value of t5, only beating data is being used to

determine the source location. For _5 -- 1, we have difficulty inverting K for many source

locations. We have also performed retrievals, in the presence of measurement errors, for the

values: t5 - 10, 102, l03, 104, 105, and l06. Figure A.l shows the result for t5 ,,- 10, l03, and

105. There is not much change in the solution from l0 to 103, but the dominance of beating data

constraints at l05 begins to reduce the quality of the solution (i.e., a 2 ° random bearing error can

create a substantial location error if the source range is sufficiently large).

We have performed the same type of computer-aided symbolic manipulation to determine

explicite forms when a four sensor network is used (i.e., one more arrival time equation and one
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morebeatingequationis addedto thesystemin A-1 sothatK becomesa 7x3matrix).In this case,

theformofx (aswell asy) is

X = ko_4 -4- kll_ 2 + k2 + kj+4)a j -t-
j=l

(A-4)

Most of the 17 functions, k j, j = 0 ..... 16 depend on both arrival time and bearing data.

However, (k2,k6,kT, ks) depend on arrival time data, but do not depend on bearing data. We

obtain the final limiting conditions

limx= l(k60t 2 +kTa 3 + ksa4) - r(t,)
640 k 2 _

lim x = _(kg_ , + k,o_2 + k,,_3 + kl2_4 ) - _2(¢)i) ;
i=1,2,3 .

(A-5)

Hence, we swing from a solution governed only by timing data (S -- 0) to one governed only by

bearing data (8 - oo). The solutions for 6- 10, 105, and 105 are shown in Figure A.2. The

beating data significantly worsens the solution when weighted heavily (S - 10_).



Appendix B--Locations Where QP Method Discriminant Function Vanishes

We investigate more rigorously the zeroes of the discriminant function A - (B 2- 4AC) of

(27) in the QP method. The computer plots of this function gave some interesting results near the

outer baselines of the sensors, i.e., there appears to be minima there (see Fig. I 1).

In the following formal approach, we algebraically reduce the discriminant into the product

of three factors. Each factor is then shown to vanish along a specific outer sensor baseline. Our

results apply to arbitrary network geometries. Because a zero discriminant implies that two

nonnegative, real, and equal roots are obtained, a unique (unambiguous) solution (x(r), y(r), t(r))

is obtained on the outer sensor baselines where r =, -B/(2A) = r+ = r_.

Using the forms in (26) for A, B, and C, the discriminant can be written as

29

A : 4c2[(p 2 - r22r2 Xq_2t 2 - 2q_q_t2, 3 + q_2,_)+ e2tr], (B-l)

where

P = r2 "!"3 = x2x3 + Y2Y3

e = ldetQ = l(x2y 3 - y2x3) (B-2)
C c

cr= 4q22 -2pq'2q_ +4q32

To simplify some of the algebra without losing generality, we rotate the x and y axes so that

Y2 ---0. Further reduction of (B-l) leads to

A=[x22y_(x_-c2t22)][r2-c2t2][Cx_-c2t22)+2(c2t2t3-x2x3)+(ra2-c2t2)]. (B-3)
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Figure B.1 considers the second factor,(4 -c2t_ ), in (B-3). For a source located on the solid line

with r > r3 site three is excited at

r-r 3 -r r- 5 5
t 3 = t + _ = m + _ = ___ (B-4)

C C C C

The factor becomes

c" l:r l3 - =0 (B-5)

Proceeding in a similar fashion, the factor for a source on the dashed line with 0 < r < r_ is the

nonzero result, 4r(r 3 -r), and the factor for a source on the dotted line (with 0 < r < r3) or a

source on the thick line (with r _>r3) is zero. Hence, the factor is zero along the line running

through the sensors (including the sensor locations themselves, but excluding the line segment

between the sensors). This is what we refer to as the "outer sensor baselines". Similar comments

can be made regarding sites 1 and 2 when the factor (x_ -c2tg) is considered.

Evidently the third factor in (B-3) corresponds to the line running through sites 2 and 3. To

prove this, we consider the geometry provided in Figure B.2. For a source on the solid line with d

> 0 we have

D+d-r

t2 = C

d-r

t3=_
c

(B-6)
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Substituting these expressions into the third factor, and noting that D 2 -" (x 2 - x 3 )2 + y] =

x22 - 2x2x 3 + r2, we obtain

xg-(D+d-r) 2 +r2-(d-r) 2 +2(D+d-r)(d-r)-2x2x 3

=(x -2x2x 3 +r2)-[(D+d-r)-(d-r)] 2 (B-7)

For a source located on the dashed line (but not at site 2 or site 3) the factor reduces to the nonzero

result: 4092093[(x 2 -x3)2+y2], where the constant factors (092,093) obey the constraints:

092 + 093 = 1,09 2 > 0, 093 > 0. Finally, for a source on the dotted line and a distance l > 0 from site

2, we have

l-I"

t 2 =_
C

D+l-r

t3 = C

(B-8)

These expressions have the same form as those in (B-6) but are interchanged. When substituted

into the third factor of (B-3), the factor reduces to zero as in (B-7). This completes the proof

showing that the discriminant function vanishes along the outer sensor baselines.



Figure 1. Geometry associated with the LP method.
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Figure 2. Spherical trigonometry used for determining arrival time and beating.

Figure 3. Lightning location retrieval errors for a three-station network using the LP method: (a)

no measurement errors, and (b) with the following random measurement errors: 0.5-m sensor

location error, 300-ns timing error, 2 ° bearing error. Mapping #1 is used. Contours are in units of

kilometers. The analysis region shown is 6 ° in latitude (667 km) by 6° in longitude (about 651

km), and this is where the Maritime Continent Thunderstorm EXperiment (MCTEX) was

conducted.

Figure 4. Same as in Figure 3 except that Mapping #2 is used.

Figure 5. Same as in Figure 3 except that four sensors are used.

Figure 6. Same as in Figure 3 except that four sensors and Mapping #2 are used.

Figure 7. Same as in Figure 3 except that this is for the Tropical Ocean Global Atmosphere

Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE) analysis region, and mapping

#2 is used. The analysis region is 18 ° in latitude (2002 km) by 18 ° in longitude (about 1996 km).

Shading, rather than contouring, is used to clarify the non-monotonic distribution of retrieval

errors.

Figure 8. Comparison of roots in the QP method. The shaded regions indicate where root r÷

produces better retrieval results than root r_. The unshaded regions indicate where root r_ produces

better retrieval results than root r÷. No measurement errors have been added to the simulated data.
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Figure 9. Retrievalerrorsfrom theoptimumroot in theQPmethod:(a) no measurement errors,

and (b) with the following random measurement errors: 0.5-m sensor location error, 300-ns timing

error. Mapping #1 is used. Contours are in units of kilometers.

Figure 10, Shaded regions are the QP method "ambiguity regions" that indicate what lightning

source locations result in two unequal nonnegative real roots. No errors were added to the

simulated arrival times.

Figure 11. Plot of the (scaled) discriminant of the QP method. Expressions for A, B, and C in the

discriminant, B2-4AC, are given in (26) of the manuscript.

Figure 12. Fraction of 100 simulated sources at each location that produce complex roots using

the QP method. A 0.5-m sensor location error, a 300-ns timing error, and Mapping #1 was used.

Figure A.1 Location retrieval errors for a three station network using the LP method when (a) t5 =

10 (b) t_ - 103 and (c) fi- 10_. The same simulated measurement errors discussed in section 3 are

used: 0.5-m sensor location error, 300-ns timing error, 2 ° bearing error. Mapping #2 is used. The

contours are in units of kilometers.

Figure A.2 Same as in Figure A. 1, but for a four station network.

Figure B.1. Geometry for analyzing the second factor in the discriminant function.

Figure B.2. Geometry for analyzing the third factor in the discriminant function.
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